首页> 外文OA文献 >Model Robust Calibration: Method and Application to Electronically-Scanned Pressure Transducers
【2h】

Model Robust Calibration: Method and Application to Electronically-Scanned Pressure Transducers

机译:模型鲁棒性校准:方法和在电子扫描压力传感器中的应用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This article presents the application of a recently developed statistical regression method to the controlled instrument calibration problem. The statistical method of Model Robust Regression (MRR), developed by Mays, Birch, and Starnes, is shown to improve instrument calibration by reducing the reliance of the calibration on a predetermined parametric (e.g. polynomial, exponential, logarithmic) model. This is accomplished by allowing fits from the predetermined parametric model to be augmented by a certain portion of a fit to the residuals from the initial regression using a nonparametric (locally parametric) regression technique. The method is demonstrated for the absolute scale calibration of silicon-based pressure transducers.
机译:本文介绍了最近开发的统计回归方法在受控仪器校准问题中的应用。由Mays,Birch和Starnes开发的模型鲁棒回归(MRR)的统计方法显示出可以通过减少校准对预定参数(例如多项式,指数,对数)模型的依赖来改善仪器校准。这是通过使用非参数(局部参数)回归技术允许将预定参数模型的拟合值增加对初始回归残差的拟合值的某个部分来实现的。演示了该方法用于硅基压力传感器的绝对刻度校准。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号